Quantization and Bifurcation beyond Square-Integrable Wavefunctions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-wavelet constants for square integrable representations of G/H

In this paper we introduce two-wavelet constants for square integrable representations of homogeneous spaces. We establish the orthogonality relations fo...

متن کامل

Integrable systems, symmetries, and quantization

These notes correspond to a mini-course given at the Poisson 2016 conference in Geneva. Starting from classical integrable systems in the sense of Liouville, we explore the notion of non-degenerate singularity and expose recent research in connection with semi-toric systems. The quantum and semiclassical counterpart will also be presented, in the viewpoint of the inverse question: from the quan...

متن کامل

Square integrable projective representations and square integrable representations modulo a relatively central subgroup (I): basic results

We introduce the notion of square integrable group representation modulo a relatively central subgroup and, establishing a link with square integrable projective representations, we prove a generalization of a classical theorem of Duflo and Moore. As an example, we apply the results obtained to the Weyl-Heisenberg group.

متن کامل

Coarse quantization of highly redundant time–frequency representations of square-integrable functions

We introduce a family of coarse quantization algorithms for heavily oversampled Gabor expansions of certain classes of functions in L2(R). These algorithms, which we call the TF quantization algorithms, are inspired by sigma–delta modulation, a widely implemented coarse quantization scheme for oversampled bandlimited functions. We show that the TF algorithms produce weak type approximations whe...

متن کامل

Compression and Restoration of Square Integrable Functions

We consider classes of smooth functions on [0, 1] with mean square norm. We present a wavelet-based method for obtaining approximate pointwise reconstruction of every function with nearly minimal cost without substantially increasing the amount of data stored. In more detail: each function f of a class is supplied with a binary code of minimal (up to a constant factor) length, where the minimal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Entropy

سال: 2018

ISSN: 1099-4300

DOI: 10.3390/e20050327